Evaluating one-sided programming models for GPU cluster computations
نویسنده
چکیده
The Global Array toolkit (GA) [1] is a powerful framework for implementing algorithms with irregular communication patterns, such as those of quantum chemistry. On the other hand, accelerators such as GPUs have shown great potential for important kernels in quantum chemistry, for example, atomic integral generation [2] and dense linear algebra in correlated methods [3]. Integration of the global address space (GAS) programming model and associated one-sided protocols with GPU programming paradigms such as CUDA has the potential to revolutionize quantum chemistry by allowing the efficient use of very large clusters of heterogeneous nodes, such as the future multi-petaflop installation expected at Oak Ridge National Laboratory in 2012. This paper reports on our preliminary investigations of the technical challenges and performance opportunities associated with cluster-GPU computation using the simplest approximation to quantum chemistry applications: parallel matrix-matrix multiplication (MMM). We focus on the role of asynchronous execution of network communication, device-to-host transfer, and kernel launch to understand the extent of latency-hiding that can be achieved for dense algorithms on large matrices.
منابع مشابه
Implementing the lattice Boltzmann model on commodity graphics hardware
Modern graphics processing units (GPUs) can perform generalpurpose computations in addition to the native specialized graphics operations. Due to the highly parallel nature of graphics processing, the GPU has evolved into a many-core coprocessor that supports high data parallelism. Its performance has been growing at a rate of squared Moore’s law, and its peak floating point performance exceeds...
متن کاملOnline Scheduling on a CPU-GPU Cluster
We consider the online scheduling problem in a CPU-GPU cluster. In this problem there are two sets of processors, the CPU processors and GPU processors. Each job has two distinct processing times, one for the CPU processor and the other for the GPU processor. Once a job is released, a decision should be made immediately about which processor it should be assigned to. The goal is to minimize the...
متن کاملFastplay-A Parallelization Model and Implementation of SMC on CUDA based GPU Cluster Architecture
We propose a four-tiered parallelization model for acceleration of the secure multiparty computation (SMC) on the CUDA based Graphic Processing Unit (GPU) cluster architecture. Specification layer is the top layer, which adopts the SFDL of Fairplay for specification of secure computations. The SHDL file generated by the SFDL compiler of Fairplay is used as inputs to the function layer, for whic...
متن کاملLNCS 7876 - Theory and Applications of Models of Computation
We consider the online scheduling problem in a CPU-GPU cluster. In this problem there are two sets of processors, the CPU processors and GPU processors. Each job has two distinct processing times, one for the CPU processor and the other for the GPU processor. Once a job is released, a decision should be made immediately about which processor it should be assigned to. The goal is to minimize the...
متن کاملORE extraction and blending optimization model in poly- metallic open PIT mines by chance constrained one-sided goal programming
Determination a sequence of extracting ore is one of the most important problems in mine annual production scheduling. Production scheduling affects mining performance especially in a poly-metallic open pit mine with considering the imposed operational and physical constraints mandated by high levels of reliability in relation to the obtained actual results. One of the important operational con...
متن کامل